
Package: labelmachine (via r-universe)
September 17, 2024

Title Make Labeling of R Data Sets Easy

Version 1.0.0

Description Assign meaningful labels to data frame columns.
'labelmachine' manages your label assignment rules in 'yaml'
files and makes it easy to use the same labels in multiple
projects.

Depends R (>= 3.5.0)

Imports yaml (>= 2.2.0)

Suggests testthat (>= 2.1.0), roxygen2 (>= 6.1.1), magrittr (>= 1.5),
rlang (>= 0.4.0), covr, knitr, rmarkdown

Encoding UTF-8

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

RoxygenNote 6.1.1

License GPL-3

URL https://a-maldet.github.io/labelmachine,

https://github.com/a-maldet/labelmachine

BugReports https://github.com/a-maldet/labelmachine/issues

Collate 'composerr.R' 'imports.R' 'utilities.R' 'lama_dictionary.R'
'lama_merge.R' 'lama_mutate.R' 'lama_read.R' 'lama_select.R'
'lama_rename.R' 'lama_translate.R' 'lama_translate_all.R'
'lama_write.R' 'lappli.R'

Repository https://a-maldet.r-universe.dev

RemoteUrl https://github.com/a-maldet/labelmachine

RemoteRef HEAD

RemoteSha 18fc739c5f69a3a69589746b4c44df16d219bd65

1

https://a-maldet.github.io/labelmachine
https://github.com/a-maldet/labelmachine
https://github.com/a-maldet/labelmachine/issues

2 Contents

Contents

as.lama_dictionary . 3
check_and_translate_all . 6
check_and_translate_df . 7
check_and_translate_df_ . 8
check_and_translate_vector . 9
check_and_translate_vector_ . 10
check_arguments . 11
check_rename . 12
check_select . 12
composerr_ . 13
contains_na_escape . 14
dictionary_to_yaml . 14
escape_to_na . 15
is.lama_dictionary . 15
is.syntactic . 16
lama_get . 17
lama_merge . 19
lama_mutate . 20
lama_read . 22
lama_rename . 22
lama_select . 24
lama_translate . 25
lama_translate_all . 31
lama_write . 33
lapplI . 34
named_lapply . 35
NA_lama_ . 35
na_to_escape . 36
new_lama_dictionary . 36
print.lama_dictionary . 39
rename_translation . 40
stringify . 40
translate_df . 41
translate_vector . 42
validate_lama_dictionary . 43
validate_translation . 44
yaml_to_dictionary . 45

Index 46

as.lama_dictionary 3

as.lama_dictionary Coerce to a lama_dictionary class object

Description

This function allows two types of arguments:

• named list: A named list object holding the translations.

• data.frame: A data.frame with one ore more column pairs. Each column pair consists of a
column holding the original values, which should be replaced, and a second character column
holding the new labels which should be assigned to the original values. Use the arguments
col_old and col_new in order to define which columns are holding original values and which
columns hold the new labels. The names of the resulting translations are defined by a character
vector given in argument translation. Furthermore, each translation can have a different
ordering which can be configured by a character vector given in argument ordering.

Usage

as.lama_dictionary(.data, ...)

S3 method for class 'list'
as.lama_dictionary(.data, ...)

S3 method for class 'lama_dictionary'
as.lama_dictionary(.data, ...)

Default S3 method:
as.lama_dictionary(.data = NULL, ...)

S3 method for class 'data.frame'
as.lama_dictionary(.data, translation, col_old,
col_new, ordering = rep("row", length(translation)), ...)

Arguments

.data An object holding the translations. .data can be of the following data types:

• named list: A named list object, where each list entry is a translation (a
named character vector)

• data.frame: A data.frame holding one or more column pairs, where each
column pair consists of one column holding the original variable values
and a second column holding the new labels, which should be assigned to
the original values.

... Various arguments, depending on the data type of .data.

translation A character vector holding the names of all translations

4 as.lama_dictionary

col_old This argument is only used, if the argument given in .data is a data.frame.
In this case, the argument col_old must be a character vector (same length
as translation) holding the names of the columns in the data.frame (in the
argument .data) which hold the original variable values. These columns can be
of any type: character, logical, numerical or factor.

col_new This argument is only used, if the argument given in .data is a data.frame.
In this case, the argument col_old must be a character vector (same length
as translation) holding the names of the columns in the data.frame (in the
argument .data) which hold the new labels, which should be assigned to the
original values. These columns can be character vectors or factors with
character labels.

ordering This argument is only used, if the argument given in .data is a data.frame. In
this case, the argument ordering must be a character vector (same length as
translation) holding one of the following configuration strings configuring
the ordering of each corresponding translation:

• "row": The corresponding translation will be ordered exactly in the same
way as the rows are ordered in the data.frame .data.

• "old": The corresponding translation will be ordered by the given original
values which are contained in the corresponding column col_old. If the
column contains a factor variable, then the ordering of the factor will be
used. If it just contains a plain character variable, then it will be ordered
alphanumerically.

• "new": The corresponding translation will be ordered by the given new
labels which are contained in the corresponding column col_new. If the
column contains a factor variable, then the ordering of the factor will be
used. If it just contains a plain character variable, then it will be ordered
alphanumerically.

Value

A new lama_dictionary class object holding the passed in translations.

Translations

A translation is a named character vector of non zero length. This named character vector defines
which labels (of type character) should be assigned to which values (can be of type character, log-
ical or numeric) (e.g. the translation c("0" = "urban", "1" = "rural") assigns the label "urban"
to the value 0 and "rural" to the value 1, for example the variable x = c(0, 0, 1) is translated
to x_new = c("urban", "urban", "rural")). Therefore, a translation (named character vector)
contains the following information:

• The names of the character vector entries correspond to the original variable levels. Variables
of types numeric or logical are turned automatically into a character vector (e.g. 0 and 1 are
treated like "0" and "1").

• The entries (character strings) of the character vector correspond to the new labels, which will
be assigned to the original variable levels. It is also allowed to have missing labels (NAs). In
this case, the original values are mapped onto missing values.

as.lama_dictionary 5

The function lama_translate() is used in order to apply a translation on a variable. The resulting
vector with the assigned labels can be of the following types:

• character: An unordered vector holding the new character labels.

• factor with character levels: An ordered vector holding the new character labels.

The original variable can be of the following types:

• character vector: This is the simplest case. The character values will replaced by the corre-
sponding labels.

• numeric or logical vector: Vectors of type numeric or logical will be turned into character
vectors automatically before the translation process and then simply processed like in the
character case. Therefore, it is sufficient to define the translation mapping for the character
case, since it also covers the numeric and logical case.

• factor vector with levels of any type: When translating factor variables one can decide whether
or not to keep the original ordering. Like in the other cases the levels of the factor variable
will always be turned into character strings before the translation process.

Missing values

It is also possible to handle missing values with lama_translate(). Therefore, the used translation
must contain a information that tells how to handle a missing value. In order to define such a
translation the missing value (NA) can be escaped with the character string "NA_". This can be
useful in two situations:

• All missing values should be labeled (e.g. the translation c("0" = "urban", "1" = "rural",
NA_ = "missing") assigns the character string "missing" to all missing values of a variable).

• Map some original values to NA (e.g. the translation c("0" = "urban", "1" = "rural", "2" =
"NA_", "3" = "NA_") assigns NA (the missing character) to the original values 2 and 3). Actu-
ally, in this case the translation definition does not always have to use this escape mechanism,
but only when defining the translations inside of a YAML file, since the YAML parser does not
recognize missing values.

lama_dictionary class objects

Each lama_dictionary class object can contain multiple translations, each with a unique name un-
der which the translation can be found. The function lama_translate() uses a lama_dictionary
class object to translate a normal vector or to translate one or more columns in a data.frame.
Sometimes it may be necessary to have different translations for the same variable, in this case it is
best to have multiple translations with different names (e.g. area_short = c("0" = "urb", "1" =
"rur") and area = c("0" = "urban", "1" = "rural")).

Examples

Example-1: Initialize a lama-dictionary from a list oject
holding the translations
obj <- list(

country = c(uk = "United Kingdom", fr = "France", NA_ = "other countries"),
language = c(en = "English", fr = "French")

)

6 check_and_translate_all

dict <- as.lama_dictionary(obj)
dict

Example-2: Initialize a lama-dictionary from a data frame
holding the label assignment rules
df_map <- data.frame(

c_old = c("uk", "fr", NA),
c_new = c("United Kingdom", "France", "other countries"),
l_old = c("en", "fr", NA),
l_new = factor(c("English", "French", NA), levels = c("French", "English"))

)
dict <- as.lama_dictionary(

df_map,
translation = c("country", "language"),
col_old = c("c_old", "l_old"),
col_new = c("c_new", "l_new"),
ordering = c("row", "new")

)
'country' is ordered as in the 'df_map'
'language' is ordered differently ("French" first)
dict

check_and_translate_all

Check and translate function used by lama_translate_all() and
lama_to_factor_all()

Description

Check and translate function used by lama_translate_all() and lama_to_factor_all()

Usage

check_and_translate_all(.data, dictionary, prefix, suffix, fn_colname,
keep_order, to_factor, is_translated, err_handler)

Arguments

.data Either a data frame, a factor or a vector.

dictionary A lama_dictionary object, holding the translations for various variables.

prefix A character string, which is used as prefix for the new column names.

suffix A character string, which is used as suffix for the new column names.

fn_colname A function, which transforms character string into a new character string. This
function will be used to transform the old column names into new column names
under which the labeled variables will then be stored.

keep_order A logical of length one, defining if the original order (factor order or alphanu-
merical order) of the data frame variables should be preserved.

check_and_translate_df 7

to_factor A logical of length one, defining if the resulting labeled variables should be
factor variables (to_factor = TRUE) or plain character vectors (to_factor =
FALSE).

is_translated A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all variable
translations. If is_translated = TRUE, then the original variable is a character
vector holding the right labels (character strings). In this case, the labels are
left unchanged, but the variables are turned into factors with order given in the
selected translations.

err_handler An error handling function

check_and_translate_df

Checks arguments and translate a data.frame

Description

Checks arguments and translate a data.frame

Usage

check_and_translate_df(.data, dictionary, args, keep_order, to_factor,
is_translated, err_handler)

Arguments

.data Either a data frame, a factor or an atomic vector.

dictionary A lama_dictionary object, holding the translations for various variables.

args The list of arguments given in ... when calling lama_translate() or lama_to_factor()

keep_order A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all vari-
able translations. If the vector has the same length as the number of arguments
in ..., then the to each variable translation there is a corresponding boolean
configuration. If a translated variable in the data.frame is a factor variable, and
the corresponding boolean configuration is set to TRUE, then the the order of the
original factor variable will be preserved.

to_factor A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all vari-
able translations. If the vector has the same length as the number of arguments
in ..., then the to each variable translation there is a corresponding boolean
configuration. If to_factor is TRUE, then the resulting labeled variable will be
a factor. If to_factor is set to FALSE, then the resulting labeled variable will be
a plain character vector.

8 check_and_translate_df_

is_translated A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all variable
translations. If is_translated = TRUE, then the original variable is a character
vector holding the right labels (character strings). In this case, the labels are
left unchanged, but the variables are turned into factors with order given in the
selected translations.

err_handler An error handling function

check_and_translate_df_

Checks arguments and translate a data.frame (standard eval)

Description

Checks arguments and translate a data.frame (standard eval)

Usage

check_and_translate_df_(.data, dictionary, translation, col, col_new,
keep_order, to_factor, is_translated, err_handler)

Arguments

.data Either a data frame, a factor or an atomic vector.

dictionary A lama_dictionary object, holding the translations for various variables.

translation A character vector holding the names of the variable translations which should
be used for assigning new labels to the variable. This names must be a subset of
the translation names returned by names(dictionary).

col Only used if .data is a data frame. The argument col must be a character
vector of the same length as translation holding the names of the data.frame
columns that should be relabeled. If omitted, then it will be assumed that the
column names are the same as the given translation names in the argument
translation.

col_new Only used if .data is a data frame. The argument col must be a character
vector of the same length as translation holding the names under which the
relabeled variables should be stored in the data.frame. If omitted, then it will be
assumed that the new column names are the same as the column names of the
original variables.

keep_order A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all vari-
able translations. If the vector has the same length as the number of arguments
in ..., then the to each variable translation there is a corresponding boolean
configuration. If a translated variable in the data.frame is a factor variable, and
the corresponding boolean configuration is set to TRUE, then the the order of the
original factor variable will be preserved.

check_and_translate_vector 9

to_factor A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all vari-
able translations. If the vector has the same length as the number of arguments
in ..., then the to each variable translation there is a corresponding boolean
configuration. If to_factor is TRUE, then the resulting labeled variable will be
a factor. If to_factor is set to FALSE, then the resulting labeled variable will be
a plain character vector.

is_translated A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all variable
translations. If is_translated = TRUE, then the original variable is a character
vector holding the right labels (character strings). In this case, the labels are
left unchanged, but the variables are turned into factors with order given in the
selected translations.

err_handler An error handling function

check_and_translate_vector

Checks arguments and translate a vector

Description

Checks arguments and translate a vector

Usage

check_and_translate_vector(.data, dictionary, args, keep_order, to_factor,
is_translated, err_handler)

Arguments

.data Either a data frame, a factor or an atomic vector.
dictionary A lama_dictionary object, holding the translations for various variables.
args The list of arguments given in ... when calling lama_translate() or lama_to_factor()
keep_order A boolean vector of length one or the same length as the number of translations.

If the vector has length one, then the same configuration is applied to all vari-
able translations. If the vector has the same length as the number of arguments
in ..., then the to each variable translation there is a corresponding boolean
configuration. If a translated variable in the data.frame is a factor variable, and
the corresponding boolean configuration is set to TRUE, then the the order of the
original factor variable will be preserved.

to_factor A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all vari-
able translations. If the vector has the same length as the number of arguments
in ..., then the to each variable translation there is a corresponding boolean
configuration. If to_factor is TRUE, then the resulting labeled variable will be
a factor. If to_factor is set to FALSE, then the resulting labeled variable will be
a plain character vector.

10 check_and_translate_vector_

is_translated A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all variable
translations. If is_translated = TRUE, then the original variable is a character
vector holding the right labels (character strings). In this case, the labels are
left unchanged, but the variables are turned into factors with order given in the
selected translations.

err_handler An error handling function

check_and_translate_vector_

Checks arguments and translate a character vector (standard eval)

Description

Checks arguments and translate a character vector (standard eval)

Usage

check_and_translate_vector_(.data, dictionary, translation, keep_order,
to_factor, is_translated, err_handler)

Arguments

.data Either a data frame, a factor or an atomic vector.

dictionary A lama_dictionary object, holding the translations for various variables.

translation A character vector holding the names of the variable translations which should
be used for assigning new labels to the variable. This names must be a subset of
the translation names returned by names(dictionary).

keep_order A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all vari-
able translations. If the vector has the same length as the number of arguments
in ..., then the to each variable translation there is a corresponding boolean
configuration. If a translated variable in the data.frame is a factor variable, and
the corresponding boolean configuration is set to TRUE, then the the order of the
original factor variable will be preserved.

to_factor A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all vari-
able translations. If the vector has the same length as the number of arguments
in ..., then the to each variable translation there is a corresponding boolean
configuration. If to_factor is TRUE, then the resulting labeled variable will be
a factor. If to_factor is set to FALSE, then the resulting labeled variable will be
a plain character vector.

is_translated A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all variable
translations. If is_translated = TRUE, then the original variable is a character

check_arguments 11

vector holding the right labels (character strings). In this case, the labels are
left unchanged, but the variables are turned into factors with order given in the
selected translations.

err_handler An error handling function

check_arguments Function that applies some general checks to the arguments of
lama_translate() and lama_translate_()

Description

Function that applies some general checks to the arguments of lama_translate() and lama_translate_()

Usage

check_arguments(.data, dictionary, col_new, keep_order, to_factor,
err_handler)

Arguments

.data Either a data frame, a factor or an atomic vector.

dictionary A lama_dictionary object, holding the translations for various variables.

col_new Only used if .data is a data frame. The argument col must be a character
vector of the same length as translation holding the names under which the
relabeled variables should be stored in the data.frame. If omitted, then it will be
assumed that the new column names are the same as the column names of the
original variables.

keep_order A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all vari-
able translations. If the vector has the same length as the number of arguments
in ..., then the to each variable translation there is a corresponding boolean
configuration. If a translated variable in the data.frame is a factor variable, and
the corresponding boolean configuration is set to TRUE, then the the order of the
original factor variable will be preserved.

to_factor A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all vari-
able translations. If the vector has the same length as the number of arguments
in ..., then the to each variable translation there is a corresponding boolean
configuration. If to_factor is TRUE, then the resulting labeled variable will be
a factor. If to_factor is set to FALSE, then the resulting labeled variable will be
a plain character vector.

err_handler An error handling function

12 check_select

check_rename Function that checks the passed in arguments for lama_rename() and
lama_rename_()

Description

Function that checks the passed in arguments for lama_rename() and lama_rename_()

Usage

check_rename(.data, old, new, err_handler)

Arguments

.data A lama_dictionary object, holding the variable translations

old A character vector holding the names of the variable translations, that should be
renamed.

new A character vector holding the new names of the variable translations.

err_handler A error handling function

check_select Function that checks the passed in arguments for lama_select() and
lama_select_()

Description

Function that checks the passed in arguments for lama_select() and lama_select_()

Usage

check_select(.data, key, err_handler)

Arguments

.data A lama_dictionary object, holding the variable translations

key A character vector holding the names of the variable translations, that should be
renamed.

err_handler A error handling function

composerr_ 13

composerr_ Compose error handlers (concatenate error messages)

Description

The functions composerr(), composerr_() and composerr_parent() modify error handlers by
appending character strings to the error messages of the error handling functions:

• composerr() uses non-standard evaluation.

• composerr_() is the standard evaluation alternative of composerr().

• composerr_parent() is a wrapper of composerr(), defining the parent environment as the
lookup environment of the err_handler. This function looks up the prior error handling
function in the parent environment of the current environment and allows you to store the
modified error handling function under the same name as the error handling function from
the parent environment without running into recursion issues. This is especially useful when
doing error handling in nested environments (e.g. checking nested list objects) and you don
not want to use different names for the error handling functions in the nested levels. If you
don’t have a nested environment situation, better use composerr() or composerr_().

Usage

composerr_(text_1 = NULL, err_prior = NULL, text_2 = NULL,
sep_1 = ": ", sep_2 = ": ", env_prior = parent.frame())

composerr(text_1 = NULL, err_prior = NULL, text_2 = NULL,
sep_1 = ": ", sep_2 = ": ", env_prior = parent.frame())

composerr_parent(text_1 = NULL, err_prior = NULL, text_2 = NULL,
sep_1 = ": ", sep_2 = ": ", env_prior = parent.frame())

Arguments

text_1 A character string, which will be appended at the beginning of the error message.
The argument sep_1 will be used as text separator.

err_prior There are three valid types:

• err_prior is omitted: A new error handling message will be returned.
• composerr_ is the calling function: err_prio must be a character string

holding the name of the error handling function to which the message part
should be appended.

• composerr is the calling function: err_prio must be the error handling
function to which the message part should be appended.

text_2 A character string, which will be appended at the end of the error message. The
argument sep_2 will be used as text separator.

sep_1 A character string that is used as separator for the concatenation of text_1 at
the beginning of the error message.

14 dictionary_to_yaml

sep_2 A character string that is used as separator for the concatenation of text_2 at
the end of the error message.

env_prior An environment where the error handling function given in err_prior can be
found. If no environment is given, then the err_prior will be looked up in
the current environment. In the situation of nested scopes, you may change the
lookup environment to the parent environment in order to be able to recursively
override the name of the error handling function. In order to keep it simple, the
function composerr_parent() can be used instead.

Value

A new error handling function that has an extended error message.

contains_na_escape Check if a character vector contains NA replacement strings

Description

Check if a character vector contains NA replacement strings

Usage

contains_na_escape(x)

Arguments

x A character vector that should be checked.

Value

TRUE if the vector contains NA replacement strings. FALSE else.

dictionary_to_yaml Transform data structure from lama_dictionary class input format to
the yaml format

Description

In the lama_dictionary class object the data has the structure vars (named list) > translations (named
character vector) This structure is transformed to the yaml file structure vars (named list) > transla-
tions (named list)

Usage

dictionary_to_yaml(data)

escape_to_na 15

Arguments

data A list that has lama-dictionary structure.

Value

An object similar to lama-dictionary object, but each translation is not a named character vector,
but a named list holding character strings.

escape_to_na Replace "NA_" by NA

Description

Replace "NA_" by NA

Usage

escape_to_na(x)

Arguments

x A character vector that should be modified.

Value

A character vector, where the NA replacement strings are replaced by NAs.

is.lama_dictionary Check if an object is a lama_dictionary class object

Description

Check if an object is a lama_dictionary class object

Usage

is.lama_dictionary(obj)

Arguments

obj The object in question

Value

TRUE if the object is a lama_dictionary class object, FALSE otherwise.

16 is.syntactic

See Also

validate_lama_dictionary(), as.lama_dictionary(), new_lama_dictionary(), lama_translate(),
lama_to_factor(), lama_translate_all(), lama_to_factor_all(), lama_read(), lama_write(),
lama_translate(), lama_read(), lama_write(), lama_select(), lama_rename(), lama_mutate(),
lama_merge()

Examples

check if an object is a 'lama_dictionary' class object
dict <- new_lama_dictionary(country = c(uk = "United Kingdom", fr = "France"))
is.lama_dictionary(dict)

is.syntactic Check if a variable name is syntactically valid

Description

This function was suggested by ’Hadley Wickham’ in a forum

Usage

is.syntactic(x)

Arguments

x A character string that should be checked, if it contains a valid object name.

Value

TRUE if valid, FALSE else.

References

http://r.789695.n4.nabble.com/Syntactically-valid-names-td3636819.html

http://r.789695.n4.nabble.com/Syntactically-valid-names-td3636819.html

lama_get 17

lama_get Retrieve a translation from a lama_dictionary class object

Description

The functions lama_get() and lama_get_() take a lama_dictionary and extract a specific transla-
tion. The function lama_get() uses non-standard evaluation, whereas lama_get_() is the standard
evaluation alternative.

Usage

lama_get(.data, translation)

S3 method for class 'lama_dictionary'
lama_get(.data, translation)

lama_get_(.data, translation)

S3 method for class 'lama_dictionary'
lama_get_(.data, translation)

Arguments

.data A lama_dictionary object

translation Depending on which function was used:

• lama_get: An unquoted translation name.
• lama_get_: A character string holding the translation name.

Value

The wanted translation (named character vector).

Translations

A translation is a named character vector of non zero length. This named character vector defines
which labels (of type character) should be assigned to which values (can be of type character, log-
ical or numeric) (e.g. the translation c("0" = "urban", "1" = "rural") assigns the label "urban"
to the value 0 and "rural" to the value 1, for example the variable x = c(0, 0, 1) is translated
to x_new = c("urban", "urban", "rural")). Therefore, a translation (named character vector)
contains the following information:

• The names of the character vector entries correspond to the original variable levels. Variables
of types numeric or logical are turned automatically into a character vector (e.g. 0 and 1 are
treated like "0" and "1").

• The entries (character strings) of the character vector correspond to the new labels, which will
be assigned to the original variable levels. It is also allowed to have missing labels (NAs). In
this case, the original values are mapped onto missing values.

18 lama_get

The function lama_translate() is used in order to apply a translation on a variable. The resulting
vector with the assigned labels can be of the following types:

• character: An unordered vector holding the new character labels.

• factor with character levels: An ordered vector holding the new character labels.

The original variable can be of the following types:

• character vector: This is the simplest case. The character values will replaced by the corre-
sponding labels.

• numeric or logical vector: Vectors of type numeric or logical will be turned into character
vectors automatically before the translation process and then simply processed like in the
character case. Therefore, it is sufficient to define the translation mapping for the character
case, since it also covers the numeric and logical case.

• factor vector with levels of any type: When translating factor variables one can decide whether
or not to keep the original ordering. Like in the other cases the levels of the factor variable
will always be turned into character strings before the translation process.

Missing values

It is also possible to handle missing values with lama_translate(). Therefore, the used translation
must contain a information that tells how to handle a missing value. In order to define such a
translation the missing value (NA) can be escaped with the character string "NA_". This can be
useful in two situations:

• All missing values should be labeled (e.g. the translation c("0" = "urban", "1" = "rural",
NA_ = "missing") assigns the character string "missing" to all missing values of a variable).

• Map some original values to NA (e.g. the translation c("0" = "urban", "1" = "rural", "2" =
"NA_", "3" = "NA_") assigns NA (the missing character) to the original values 2 and 3). Actu-
ally, in this case the translation definition does not always have to use this escape mechanism,
but only when defining the translations inside of a YAML file, since the YAML parser does not
recognize missing values.

lama_dictionary class objects

Each lama_dictionary class object can contain multiple translations, each with a unique name un-
der which the translation can be found. The function lama_translate() uses a lama_dictionary
class object to translate a normal vector or to translate one or more columns in a data.frame.
Sometimes it may be necessary to have different translations for the same variable, in this case it is
best to have multiple translations with different names (e.g. area_short = c("0" = "urb", "1" =
"rur") and area = c("0" = "urban", "1" = "rural")).

lama_merge 19

lama_merge Merge multiple lama-dictionaries into one

Description

This function takes multiple lama_dictionary class objects and merges them together into a single
lama_dictionary class object. In case some class objects have entries with the same name, the class
objects passed in later overwrite the class objects passed in first (e.g. in lama_merge(x, y, z): The
lexicon z overwrites x and y. The lexicon y overwrites x).

Usage

lama_merge(..., show_warnings = TRUE)

S3 method for class 'lama_dictionary'
lama_merge(..., show_warnings = TRUE)

Arguments

... Two or more lama_dictionary class objects, which should be merged together.

show_warnings A logical flag that defines, whether warnings should be shown (TRUE) or not
(FALSE).

Value

The merged lama_dictionary class object

See Also

lama_translate(), lama_to_factor(), lama_translate_all(), lama_to_factor_all(), new_lama_dictionary(),
as.lama_dictionary(), lama_rename(), lama_select(), lama_mutate(), lama_read(), lama_write()

Examples

initialize lama_dictinoary
dict_1 <- new_lama_dictionary(

subject = c(en = "English", ma = "Mathematics"),
result = c("1" = "Very good", "2" = "Good", "3" = "Not so good")

)
dict_2 <- new_lama_dictionary(

result = c("1" = "Super", "2" = "Fantastic", "3" = "Brilliant"),
grade = c(a = "Primary School", b = "Secondary School")

)
dict_3 <- new_lama_dictionary(

country = c(en = "England", "at" = "Austria", NA_ = "Some other country")
)
dict <- lama_merge(dict_1, dict_2, dict_3)
The lama_dictionary now contains the translations

20 lama_mutate

'subject', 'result', 'grade' and 'country'
The translation 'result' from 'dict_1' was overwritten by the 'result' in 'dict_2'
dict

lama_mutate Change or append a variable translation to an existing
lama_dictionary object

Description

The functions lama_mutate() and lama_mutate_() alter a lama_dictionary object. They can be
used to alter, delete or append a translations to a lama_dictionary object. The function lama_mutate()
uses named arguments to assign the translations to the new names (similar to dplyr::mutate),
whereas the function lama_mutate_() is takes a character string key holding the name to which
the translation should be assigned and a named character vector translation holding the actual
translation mapping.

Usage

lama_mutate(.data, ...)

S3 method for class 'lama_dictionary'
lama_mutate(.data, ...)

lama_mutate_(.data, key, translation)

S3 method for class 'lama_dictionary'
lama_mutate_(.data, key, translation)

Arguments

.data A lama_dictionary object

... One or more unquoted expressions separated by commas. Use named argu-
ments, e.g. new_transation_name = c(a = "A", b = "B"), to set translations
(named character vectors) to new translation names. If you want to delete an
existing translation assign the value NULL (e.g. old_translation = NULL). It is
also possible use complex expressions as long as the resulting object is a valid
translation object (named character vector). Furthermore, it is possible to use
translation names that are already existing in the dictionary, in order to mod-
ify them (e.g. new_translation = c(v = "V", w = "W", old_translation, z
= "Z"), where old_translation = c(x = "X", y = "Y")).

key The name of the variable translation that should be altered. It can also be variable
translation name that does not exist yet.

translation A named character vector holding the new variable translation that should be
assigned to the name given in argument key. The names of the character vector
translation correspond to the original variable values that should be replaced
by the new labels. The values in the character vector translations are the
labels that should be assigned to the original values.

lama_mutate 21

Value

An updated lama_dictionary class object.

See Also

lama_translate(), lama_to_factor(), lama_translate_all(), lama_to_factor_all(), new_lama_dictionary(),
as.lama_dictionary(), lama_rename(), lama_select(), lama_merge(), lama_read(), lama_write()

Examples

initialize lama_dictinoary
dict <- new_lama_dictionary(

subject = c(en = "English", ma = "Mathematics"),
result = c("1" = "Very good", "2" = "Good", "3" = "Not so good")

)

Example-1: mutate and append with 'lama_mutate'
add a few subjects and a few grades
dict_new <- lama_mutate(

dict,
subject = c(bio = "Biology", subject, sp = "Sports"),
result = c("0" = "Beyond expectations", result, "4" = "Failed", NA_ = "Missed")

)
the subjects "Biology" and "Sports" were added
and the results "Beyond expectations", "Failed" and "Missed"
dict_new

Example-2: delete with 'lama_mutate'
dict_new <- lama_mutate(

dict,
subject = NULL

)
dict_new

Example-3: Alter and append with 'lama_mutate_'
generate the new translation (character string)
subj <- c(

bio = "Biology",
lama_get(dict, subject),
sp = "Sports"

)
save the translation under the name "subject"
dict_new <- lama_mutate_(

dict,
key = "subject",
translation = subj

)
the translation "subject" now also contains
the subjects "Biology" and "Sports"
dict_new

Example-4: Delete with 'lama_mutate_'

22 lama_rename

save the translation under the name "subject"
dict_new <- lama_mutate_(

dict,
key = "subject",
translation = NULL

)
the translation "subject" was deleted
dict_new

lama_read Read in a yaml file holding translations for one or multiple variables

Description

Read in a yaml file holding translations for one or multiple variables

Usage

lama_read(yaml_path)

Arguments

yaml_path Path to yaml file holding the labels and translations for multiple variables

Value

A lama_dictionary class object holding the variable translations defined in the yaml file

Examples

path_to_file <- system.file("extdata", "dictionary_exams.yaml", package = "labelmachine")
dict <- lama_read(path_to_file)

lama_rename Rename multiple variable translations in a lama_dictionary object

Description

The functions lama_rename() and lama_rename_() are used to rename one or more variable trans-
lations inside of a lama_dictionary class object. The function lama_rename() uses non-standard
evaluation, whereas lama_rename_() is the standard evaluation alternative.

lama_rename 23

Usage

lama_rename(.data, ...)

S3 method for class 'lama_dictionary'
lama_rename(.data, ...)

lama_rename_(.data, old, new)

S3 method for class 'lama_dictionary'
lama_rename_(.data, old, new)

Arguments

.data A lama_dictionary object, holding the variable translations

... One or more unquoted expressions separated by commas. Use named argu-
ments, e.g. new_name = old_name, to rename selected variables.

old A character vector holding the names of the variable translations, that should be
renamed.

new A character vector holding the new names of the variable translations.

Value

The updated lama_dictionary class object.

See Also

lama_translate(), lama_to_factor(), lama_translate_all(), lama_to_factor_all(), new_lama_dictionary(),
as.lama_dictionary(), lama_select(), lama_mutate(), lama_merge(), lama_read(), lama_write()

Examples

initialize lama_dictinoary
dict <- new_lama_dictionary(

country = c(uk = "United Kingdom", fr = "France", NA_ = "other countries"),
language = c(en = "English", fr = "French"),
result = c("1" = "Very good", "2" = "Good", "3" = "Not so good")

)

Example-1: Usage of 'lama_rename'
rename translations 'result' and 'language' to 'res' and 'lang'
dict_new <- lama_rename(dict, res = result, lang = language)
dict_new

Example-2: Usage of 'lama_rename_'
rename translations 'result' and 'language' to 'res' and 'lang'
dict_new <- lama_rename_(dict, c("result", "language"), c("res", "lang"))
dict_new

24 lama_select

lama_select Select multiple variable translations and create a new
lama_dictionary object

Description

The functions lama_select() and lama_select_() pick one or more variable translations from a
lama_dictionary class object and create a new lama_dictionary class object. The function lama_select()
uses non-standard evaluation, whereas lama_select_() is the standard evaluation alternative.

Usage

lama_select(.data, ...)

S3 method for class 'lama_dictionary'
lama_select(.data, ...)

lama_select_(.data, key)

S3 method for class 'lama_dictionary'
lama_select_(.data, key)

Arguments

.data A lama_dictionary object, holding the variable translations

... One or more unquoted translation names separated by commas.

key A character vector holding the names of the variable translations that should be
picked.

Value

A new lama_dictionary class object, holding the picked variable translations.

See Also

lama_translate(), lama_to_factor(), lama_translate_all(), lama_to_factor_all(), new_lama_dictionary(),
as.lama_dictionary(), lama_rename(), lama_mutate(), lama_merge(), lama_read(), lama_write()

Examples

initialize lama_dictinoary
dict <- new_lama_dictionary(

country = c(uk = "United Kingdom", fr = "France", NA_ = "other countries"),
language = c(en = "English", fr = "French"),
result = c("1" = "Very good", "2" = "Good", "3" = "Not so good")

)

Example-1: Usage of 'lama_select'

lama_translate 25

pick the translations 'result' and 'language'
and add them to a new lama_dictionary
dict_sub <- lama_select(dict, result, language)
dict_sub

Example-2: Usage of 'lama_select_'
pick the translations 'result' and 'language'
and add them to a new lama_dictionary
dict_sub <- lama_select_(dict, c("result", "language"))
dict_sub

lama_translate Assign new labels to a variable of a data.frame

Description

The functions lama_translate() and lama_translate_() take a factor, a vector or a data.frame
and convert one or more of its categorical variables (not necessarily a factor variable) into factor
variables with new labels. The function lama_translate() uses non-standard evaluation, whereas
lama_translate_() is the standard evaluation alternative. The functions lama_to_factor() and
lama_to_factor_() are very similar to the functions lama_translate() and lama_translate_(),
but instead of assigning new label strings to values, it is assumed that the variables are character
vectors or factors, but need to be turned into factors with the order given in the translations:

• lama_translate() and lama_translate_(): Assign new labels to a variable and turn it into
a factor variable with the order given in the corresponding translation (keep_order = FALSE)
or in the same order as the original variable (keep_order = TRUE).

• lama_to_factor() and lama_to_factor_(): The variable is a character vector or a factor
already holding the right label strings. The variables are turned into a factor variable with the
order given in the corresponding translation (keep_order = FALSE) or in the same order as the
original variable (keep_order = TRUE).

Usage

lama_translate(.data, dictionary, ..., keep_order = FALSE,
to_factor = TRUE)

S3 method for class 'data.frame'
lama_translate(.data, dictionary, ...,
keep_order = FALSE, to_factor = TRUE)

Default S3 method:
lama_translate(.data, dictionary, ...,
keep_order = FALSE, to_factor = TRUE)

lama_translate_(.data, dictionary, translation, col = translation,
col_new = col, keep_order = FALSE, to_factor = TRUE, ...)

26 lama_translate

S3 method for class 'data.frame'
lama_translate_(.data, dictionary, translation,
col = translation, col_new = col, keep_order = FALSE,
to_factor = TRUE, ...)

Default S3 method:
lama_translate_(.data, dictionary, translation, ...,
keep_order = FALSE, to_factor = TRUE)

lama_to_factor(.data, dictionary, ..., keep_order = FALSE)

S3 method for class 'data.frame'
lama_to_factor(.data, dictionary, ...,
keep_order = FALSE)

Default S3 method:
lama_to_factor(.data, dictionary, ...,
keep_order = FALSE)

lama_to_factor_(.data, dictionary, translation, col = translation,
col_new = col, keep_order = FALSE, ...)

S3 method for class 'data.frame'
lama_to_factor_(.data, dictionary, translation,
col = translation, col_new = col, keep_order = FALSE, ...)

Default S3 method:
lama_to_factor_(.data, dictionary, translation, ...,
keep_order = FALSE)

Arguments

.data Either a data frame, a factor or an atomic vector.

dictionary A lama_dictionary object, holding the translations for various variables.

... Only used by lama_translate() and lama_to_factor(). Each argument in
... is an unquoted expression and defines a translation. Use unquoted argu-
ments that tell which translation should be applied to which column and which
column name the relabeled variable should be assigned to. E.g. lama_translate(.data,
dict, Y1 = TRANS1(X1), Y2 = TRANS2(Y2)) and lama_to_factor(.data, dict,
Y1 = TRANS1(X1), Y2 = TRANS2(Y2)) and to apply the translations TRANS1 and
TRANS2 to the data.frame columns X1 and X2 and save the new labeled variables
under the column names Y1 and Y2. There are also two abbreviation mechanisms
available: The argument assignment FOO(X) is the same as X = FOO(X) and FOO
is an abbreviation for FOO = FOO(FOO). In case, .data is not a data frame but
a plain factor or an atomic vector, then the argument ... must be a single un-
quoted translation name (e.g. lama_translate(x, dict, TRANS1), where x is
a factor or an atomic vector and TRANS1 is the name of the translation, which
should be used to assign the labels to the values of x.)

lama_translate 27

keep_order A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all vari-
able translations. If the vector has the same length as the number of arguments
in ..., then the to each variable translation there is a corresponding boolean
configuration. If a translated variable in the data.frame is a factor variable, and
the corresponding boolean configuration is set to TRUE, then the the order of the
original factor variable will be preserved.

to_factor A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all vari-
able translations. If the vector has the same length as the number of arguments
in ..., then the to each variable translation there is a corresponding boolean
configuration. If to_factor is TRUE, then the resulting labeled variable will be
a factor. If to_factor is set to FALSE, then the resulting labeled variable will be
a plain character vector.

translation A character vector holding the names of the variable translations which should
be used for assigning new labels to the variable. This names must be a subset of
the translation names returned by names(dictionary).

col Only used if .data is a data frame. The argument col must be a character
vector of the same length as translation holding the names of the data.frame
columns that should be relabeled. If omitted, then it will be assumed that the
column names are the same as the given translation names in the argument
translation.

col_new Only used if .data is a data frame. The argument col must be a character
vector of the same length as translation holding the names under which the
relabeled variables should be stored in the data.frame. If omitted, then it will be
assumed that the new column names are the same as the column names of the
original variables.

Details

The functions lama_translate(), lama_translate_(), lama_to_factor() and lama_to_factor_()
require different arguments, depending on the data type passed into argument .data. If .data is of
type character, logical, numeric or factor, then the arguments col and col_new are omitted, since
those are only necessary in the case of data frames.

Value

An extended data.frame, that has a factor variable holding the assigned labels.

See Also

lama_translate_all(), lama_to_factor_all(), new_lama_dictionary(), as.lama_dictionary(),
lama_rename(), lama_select(), lama_mutate(), lama_merge(), lama_read(), lama_write()

Examples

initialize lama_dictinoary
dict <- new_lama_dictionary(

28 lama_translate

subject = c(en = "English", ma = "Mathematics"),
result = c("1" = "Very good", "2" = "Good", "3" = "Not so good")

)
the data frame which should be translated
df <- data.frame(

pupil = c(1, 1, 2, 2, 3),
subject = c("en", "ma", "ma", "en", "en"),
res = c(1, 2, 3, 2, 2)

)

Example-1: Usage of 'lama_translate' for data frames
Full length assignment
(apply translation 'subject' to column 'subject' and save it to column 'subject_new')
(apply translation 'result' to column 'res' and save it to column 'res_new')
df_new <- lama_translate(

df,
dict,
sub_new = subject(subject),
res_new = result(res)

)
str(df_new)

Example-2: Usage of 'lama_translate' for data frames
Abbreviation overwriting original columns
(apply translation 'subject' to column 'subject' and save it to column 'subject')
(apply translation 'result' to column 'res' and save it to column 'res')
df_new_overwritten <- lama_translate(

df,
dict,
subject(subject),
result(res)

)
str(df_new_overwritten)

Example-3: Usage of 'lama_translate' for data frames
Abbreviation if `translation_name == column_name`
(apply translation 'subject' to column 'subject' and save it to column 'subject_new')
(apply translation 'result' to column 'res' and save it to column 'res_new')
df_new_overwritten <- lama_translate(

df,
dict,
subject_new = subject,
res_new = result(res)

)
str(df_new_overwritten)

Example-4: Usage of 'lama_translate' for data frames labeling as character vectors
(apply translation 'subject' to column 'subject' and
save it as a character vector to column 'subject_new')
df_new_overwritten <- lama_translate(

df,
dict,
subject_new = subject,

lama_translate 29

to_factor = TRUE
)
str(df_new_overwritten)

Example-5: Usage of 'lama_translate' for atomic vectors
sub <- c("ma", "en", "ma")
sub_new <- df_new_overwritten <- lama_translate(

sub,
dict,
subject

)
str(sub_new)

Example-6: Usage of 'lama_translate' for factors
sub <- factor(c("ma", "en", "ma"), levels = c("ma", "en"))
sub_new <- df_new_overwritten <- lama_translate(

sub,
dict,
subject,
keep_order = TRUE

)
str(sub_new)

Example-7: Usage of 'lama_translate_' for data frames
(apply translation 'subject' to column 'subject' and save it to column 'subject_new')
(apply translation 'result' to column 'res' and save it to column 'res_new')
df_new <- lama_translate_(

df,
dict,
translation = c("subject", "result"),
col = c("subject", "res"),
col_new = c("subject_new", "res_new")

)
str(df_new)

Example-8: Usage of 'lama_translate_' for data frames and store as character vector
(apply translation 'subject' to column 'subject' and save it to column 'subject_new')
(apply translation 'result' to column 'res' and save it to column 'res_new')
df_new <- lama_translate_(

df,
dict,
translation = c("subject", "result"),
col = c("subject", "res"),
col_new = c("subject_new", "res_new"),
to_factor = c(FALSE, FALSE)

)
str(df_new)

Example-9: Usage of 'lama_translate_' for atomic vectors
res <- c(1, 2, 1, 3, 1, 2)
res_new <- df_new_overwritten <- lama_translate_(

res,
dict,

30 lama_translate

"result"
)
str(res_new)

Example-10: Usage of 'lama_translate_' for factors
sub <- factor(c("ma", "en", "ma"), levels = c("ma", "en"))
sub_new <- df_new_overwritten <- lama_translate_(

sub,
dict,
"subject",
keep_order = TRUE

)
str(sub_new)
the data frame which holds the right labels, but no factors
df_translated <- data.frame(

pupil = c(1, 1, 2, 2, 3),
subject = c("English", "Mathematics", "Mathematics", "English", "English"),
res = c("Very good", "Good", "Not so good", "Good", "Good")

)

Example-11: Usage of 'lama_to_factor' for data frames
Full length assignment
(apply order of translation 'subject' to column 'subject' and save it to column 'subject_new')
(apply order of translation 'result' to column 'res' and save it to column 'res_new')
df_new <- lama_to_factor(

df_translated,
dict,
sub_new = subject(subject),
res_new = result(res)

)
str(df_new)

Example-12: Usage of 'lama_to_factor' for data frames
Abbreviation overwriting original columns
(apply order of translation 'subject' to column 'subject' and save it to column 'subject')
(apply order of translation 'result' to column 'res' and save it to column 'res')
df_new_overwritten <- lama_to_factor(

df_translated,
dict,
subject(subject),
result(res)

)
str(df_new_overwritten)

Example-13: Usage of 'lama_to_factor' for data frames
Abbreviation if `translation_name == column_name`
(apply order of translation 'subject' to column 'subject' and save it to column 'subject_new')
(apply order of translation 'result' to column 'res' and save it to column 'res_new')
df_new_overwritten <- lama_to_factor(

df_translated,
dict,
subject_new = subject,
res_new = result(res)

lama_translate_all 31

)
str(df_new_overwritten)

Example-14: Usage of 'lama_translate' for atomic vectors
var <- c("Mathematics", "English", "Mathematics")
var_new <- lama_to_factor(

var,
dict,
subject

)
str(var_new)

Example-15: Usage of 'lama_to_factor_' for data frames
(apply order of translation 'subject' to column 'subject' and save it to column 'subject_new')
(apply order of translation 'result' to column 'res' and save it to column 'res_new')
df_new <- lama_to_factor_(

df_translated,
dict,
translation = c("subject", "result"),
col = c("subject", "res"),
col_new = c("subject_new", "res_new")

)
str(df_new)

Example-16: Usage of 'lama_to_factor_' for atomic vectors
var <- c("Very good", "Good", "Good")
var_new <- lama_to_factor_(

var,
dict,
"result"

)
str(var_new)

lama_translate_all Assign new labels to all variables of a data.frame

Description

The functions lama_translate_all() and lama_to_factor_all() converts all variables (which
have a translation in the given lama-dictionary) of a data frame .data into factor variables with new
labels. These functions are special versions of the functions lama_translate() and lama_to_factor().
The difference to lama_translate() and lama_to_factor() is, that when using lama_translate_all()
and lama_to_factor_all() the used translations in dictionary must have the exact same names
as the corresponding columns in the data frame .data.

Usage

lama_translate_all(.data, dictionary, prefix = "", suffix = "",
fn_colname = function(x) x, keep_order = FALSE, to_factor = TRUE)

32 lama_translate_all

S3 method for class 'data.frame'
lama_translate_all(.data, dictionary, prefix = "",
suffix = "", fn_colname = function(x) x, keep_order = FALSE,
to_factor = TRUE)

lama_to_factor_all(.data, dictionary, prefix = "", suffix = "",
fn_colname = function(x) x, keep_order = FALSE)

S3 method for class 'data.frame'
lama_to_factor_all(.data, dictionary, prefix = "",
suffix = "", fn_colname = function(x) x, keep_order = FALSE)

Arguments

.data Either a data frame, a factor or a vector.

dictionary A lama_dictionary object, holding the translations for various variables.

prefix A character string, which is used as prefix for the new column names.

suffix A character string, which is used as suffix for the new column names.

fn_colname A function, which transforms character string into a new character string. This
function will be used to transform the old column names into new column names
under which the labeled variables will then be stored.

keep_order A logical of length one, defining if the original order (factor order or alphanu-
merical order) of the data frame variables should be preserved.

to_factor A logical of length one, defining if the resulting labeled variables should be
factor variables (to_factor = TRUE) or plain character vectors (to_factor =
FALSE).

Details

The difference between lama_translate_all() and lama_to_factor_all() is the following:

• lama_translate_all(): Assign new labels to the variables and turn them into factor vari-
ables with the order given in the corresponding translations (keep_order = FALSE) or in the
same order as the original variable (keep_order = TRUE).

• lama_to_factor_all(): The variables are character vectors or factors already holding the
right label strings. The variables are turned into a factor variables with the order given in the
corresponding translation (keep_order = FALSE) or in the same order as the original variable
(keep_order = TRUE).

Value

An extended data.frame, that has a factor variable holding the assigned labels.

See Also

lama_translate(), lama_to_factor(), new_lama_dictionary(), as.lama_dictionary(), lama_rename(),
lama_select(), lama_mutate(), lama_merge(), lama_read(), lama_write()

lama_write 33

Examples

initialize lama_dictinoary
dict <- new_lama_dictionary(

subject = c(en = "English", ma = "Mathematics"),
result = c("1" = "Very good", "2" = "Good", "3" = "Not so good")

)
data frame which should be translated
df <- data.frame(

pupil = c(1, 1, 2, 2, 3),
subject = c("en", "ma", "ma", "en", "en"),
result = c(1, 2, 3, 2, 2)

)

Example-1: 'lama_translate_all''
df_new <- lama_translate_all(

df,
dict,
prefix = "pre_",
fn_colname = toupper,
suffix = "_suf"

)
str(df_new)

Example-2: 'lama_translate_all' with 'to_factor = FALSE'
The resulting variables are plain character vectors
df_new <- lama_translate_all(df, dict, suffix = "_new", to_factor = TRUE)
str(df_new)

Example-3: 'lama_to_factor_all'
The variables 'subject' and 'result' are turned into factor variables
The ordering is taken from the translations 'subject' and 'result'
df_2 <- data.frame(

pupil = c(1, 1, 2, 2, 3),
subject = c("English", "Mathematics", "Mathematics", "English", "English"),
result = c("Very good", "Good", "Good", "Very good", "Good")

)
df_2_new <- lama_to_factor_all(

df_2, dict,
prefix = "pre_",
fn_colname = toupper,
suffix = "_suf"

)
str(df_new)

lama_write Write a yaml file holding translations for one or multiple variables

Description

Write a yaml file holding translations for one or multiple variables

34 lapplI

Usage

lama_write(x, yaml_path)

Arguments

x A lama_dictionary class object holding the variable translations

yaml_path File path, where the yaml file should be saved

Examples

dict <- new_lama_dictionary(results = c(p = "Passed", f = "Failed"))
path_to_file <- file.path(tempdir(), "my_dictionary.yaml")
lama_write(dict, path_to_file)

lapplI Improve lapply and sapply with index

Description

Improve base::lapply() and base::sapply() functions by allowing an extra index argument .I
to be passed into the function given in FUN. If the function given in FUN has an argument .I then, for
each entry of X passed into FUN the corresponding index is passed into argument .I. If the function
given in FUN has no argument .I, then lapplI and sapplI are exactly the same as base::lapply()
and base::sapply(). Besides this extra feature, there is no difference to base::lapply() and
base::sapply().

Usage

lapplI(X, FUN, ...)

sapplI(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)

Arguments

X a vector (atomic or list) or an expression object. Other objects (including
classed objects) will be coerced by base::as.list.

FUN Here comes the great difference to base::lapply() and base::sapply(). When
using lapplI and sapplI, the function passed into FUN may also have an extra
argument .I. If it does, then for each item of X the current item index is passed
into argument .I of FUN. Besides this extra feature, there is no difference to
base::lapply() and base::sapply().

... optional arguments to FUN.

named_lapply 35

simplify logical or character string; should the result be simplified to a vector, matrix
or higher dimensional array if possible? For sapply it must be named and
not abbreviated. The default value, TRUE, returns a vector or matrix if appro-
priate, whereas if simplify = "array" the result may be an array of “rank”
(=length(dim(.))) one higher than the result of FUN(X[[i]]).

USE.NAMES logical; if TRUE and if X is character, use X as names for the result unless it had
names already. Since this argument follows ... its name cannot be abbreviated.

named_lapply Create a named list with lapply from a character vector

Description

Create a named list with lapply from a character vector

Usage

named_lapply(.names, FUN, ...)

Arguments

.names A character vector holding the names of the list
FUN Here comes the great difference to base::lapply() and base::sapply(). When

using lapplI and sapplI, the function passed into FUN may also have an extra
argument .I. If it does, then for each item of X the current item index is passed
into argument .I of FUN. Besides this extra feature, there is no difference to
base::lapply() and base::sapply().

... optional arguments to FUN.

Value

A named list

NA_lama_ NA replace string

Description

In order to replace NA values in yaml files and in translations the following character string is used

Usage

NA_lama_

Format

An object of class character of length 1.

36 new_lama_dictionary

na_to_escape Replace NA by "NA_"

Description

Replace NA by "NA_"

Usage

na_to_escape(x)

Arguments

x A character vector that should be modified.

Value

A character vector, where the NAs are replaced.

new_lama_dictionary Create a new lama_dictionary class object

Description

Generates an S3 class object, which holds the variable translations. There are three valid ways to
use new_lama_dictionary in order to create a lama_dictionary class object:

• No arguments were passed into ...: In this case new_lama_dictionary returns an empty
lama_dictionary class object (e.g. dict <- new_lama_dictionary()).

• The first argument is a list: In this case only the first argument of new_lama_dictionary is
used. It is not necessary to pass in a named argument. The passed in object must be a named
list object, which contains all translations that should be added to the new lama_dictionary
class object. Each item of the named list object must be a named character vector defining a
translation (e.g. new_lama_dictionary(list(area = c("0" = "urban", "1" = "rural"),
= c(l = "Low", h = "High"))) generates a lama_dictionary class object holding the transla-
tions "area" and "density").

• The first argument is a character vector: In this case, it is allowed to pass in more than one
argument. In this case, all given arguments must be named arguments holding named char-
acter vectors defining translations (e.g. new_lama_dictionary(area = c("0" = "urban",
"1" = "rural"), density = c(l = "Low", h = "High")) generates a lama_dictionary class
object holding the translations "area" and "density"). The names of the passed in argu-
ments will be used as the names, under which the given translations will be added to the new
lama_dictionary class object.

new_lama_dictionary 37

Usage

new_lama_dictionary(...)

S3 method for class 'list'
new_lama_dictionary(.data = NULL, ...)

S3 method for class 'character'
new_lama_dictionary(...)

Default S3 method:
new_lama_dictionary(...)

Arguments

... None, one or more named/unnamed arguments. Depending on the type of the
type of the first argument passed into new_lama_dictionary, there are different
valid ways of using new_lama_dictionary:

• No arguments were passed into ...: In this case new_lama_dictionary re-
turns an empty lama_dictionary class object (e.g. dict <- new_lama_dictionary()).

• The first argument is a list: In this case, only the first argument of new_lama_dictionary
is used and it is allowed to use an unnamed argument call. Furthermore, the
passed in object must be a named list object, which contains all translations
that should be added to the new lama_dictionary class object. Each item
of the named list object must be a named character vector defining a trans-
lation (e.g. new_lama_dictionary(list(area = c("0" = "urban", "1"
= "rural"), = c(l = "Low", h = "High"))) generates a lama_dictionary
class object holding the translations "area" and "density").

• The first argument is a character vector: In this case, it is allowed to
pass in more than one argument, but all given arguments when calling
new_directory must be named arguments and each argument must be a
named character vectors defining translations (e.g. new_lama_dictionary(area
= c("0" = "urban", "1" = "rural"), density = c(l = "Low", h = "High"))
generates a lama_dictionary class object holding the translations "area"
and "density"). The names of the caller arguments will be used as names
under which the given translations will be added to the new lama_dictionary
class object.

.data A named list object, where each list entry corresponds to a translation that should
be added to the lama_dictionary object (e.g. new_lama_dictionary(list(area
= c("0" = "urban", "1" = "rural"), = c(l = "Low", h = "High"))) generates
a lama_dictionary class object holding the translations "area" and "density").
The names of the list entries are the names under which the translation will be
added to the new lama_dictionary class object (e.g. area and density). Each
list entry must be a named character vector defining a translation (e.g. c("0"
= "urban", "1" = "rural") is the translation with the name area and c(l =
"Low", h = "High") is the translation with the name density).

38 new_lama_dictionary

Value

A new lama_dictionary class object holding the passed in translations.

Translations

A translation is a named character vector of non zero length. This named character vector defines
which labels (of type character) should be assigned to which values (can be of type character, log-
ical or numeric) (e.g. the translation c("0" = "urban", "1" = "rural") assigns the label "urban"
to the value 0 and "rural" to the value 1, for example the variable x = c(0, 0, 1) is translated
to x_new = c("urban", "urban", "rural")). Therefore, a translation (named character vector)
contains the following information:

• The names of the character vector entries correspond to the original variable levels. Variables
of types numeric or logical are turned automatically into a character vector (e.g. 0 and 1 are
treated like "0" and "1").

• The entries (character strings) of the character vector correspond to the new labels, which will
be assigned to the original variable levels. It is also allowed to have missing labels (NAs). In
this case, the original values are mapped onto missing values.

The function lama_translate() is used in order to apply a translation on a variable. The resulting
vector with the assigned labels can be of the following types:

• character: An unordered vector holding the new character labels.
• factor with character levels: An ordered vector holding the new character labels.

The original variable can be of the following types:

• character vector: This is the simplest case. The character values will replaced by the corre-
sponding labels.

• numeric or logical vector: Vectors of type numeric or logical will be turned into character
vectors automatically before the translation process and then simply processed like in the
character case. Therefore, it is sufficient to define the translation mapping for the character
case, since it also covers the numeric and logical case.

• factor vector with levels of any type: When translating factor variables one can decide whether
or not to keep the original ordering. Like in the other cases the levels of the factor variable
will always be turned into character strings before the translation process.

Missing values

It is also possible to handle missing values with lama_translate(). Therefore, the used translation
must contain a information that tells how to handle a missing value. In order to define such a
translation the missing value (NA) can be escaped with the character string "NA_". This can be
useful in two situations:

• All missing values should be labeled (e.g. the translation c("0" = "urban", "1" = "rural",
NA_ = "missing") assigns the character string "missing" to all missing values of a variable).

• Map some original values to NA (e.g. the translation c("0" = "urban", "1" = "rural", "2" =
"NA_", "3" = "NA_") assigns NA (the missing character) to the original values 2 and 3). Actu-
ally, in this case the translation definition does not always have to use this escape mechanism,
but only when defining the translations inside of a YAML file, since the YAML parser does not
recognize missing values.

print.lama_dictionary 39

lama_dictionary class objects

Each lama_dictionary class object can contain multiple translations, each with a unique name un-
der which the translation can be found. The function lama_translate() uses a lama_dictionary
class object to translate a normal vector or to translate one or more columns in a data.frame.
Sometimes it may be necessary to have different translations for the same variable, in this case it is
best to have multiple translations with different names (e.g. area_short = c("0" = "urb", "1" =
"rur") and area = c("0" = "urban", "1" = "rural")).

See Also

is.lama_dictionary(), as.lama_dictionary(), lama_translate(), lama_to_factor(), lama_translate_all(),
lama_to_factor_all(), lama_read(), lama_write(), lama_select(), lama_rename(), lama_mutate(),
lama_merge()

Examples

Example-1: Initialize a lama-dictionary from a list object
holding the translations
dict <- new_lama_dictionary(list(

country = c(uk = "United Kingdom", fr = "France", NA_ = "other countries"),
language = c(en = "English", fr = "French")

))
dict

Example-2: Initialize the lama-dictionary directly
by assigning each translation to a name
dict <- new_lama_dictionary(

country = c(uk = "United Kingdom", fr = "France", NA_ = "other countries"),
language = c(en = "English", fr = "French")

)
dict

print.lama_dictionary Print a lama_dictionary class object

Description

Print a lama_dictionary class object

Usage

S3 method for class 'lama_dictionary'
print(x, ...)

Arguments

x The lama_dictionary class object that should be printed.

... Unused arguments

40 stringify

See Also

new_lama_dictionary(), as.lama_dictionary(), lama_translate(), lama_to_factor(), lama_translate_all(),
lama_to_factor_all(), lama_read(), lama_write(), lama_rename(), lama_select(), lama_mutate(),
lama_merge(), lama_read(), lama_write()

rename_translation Function that actually performs the renaming of the translations

Description

Function that actually performs the renaming of the translations

Usage

rename_translation(.data, old, new)

Arguments

.data A lama_dictionary object, holding the variable translations

old A character vector holding the names of the variable translations, that should be
renamed.

new A character vector holding the new names of the variable translations.

Value

The updated lama_dictionary class object.

stringify Coerce a vector into a character string (’x1’, ’x2’, ...)

Description

Coerce a vector into a character string ('x1', 'x2', ...)

Usage

stringify(x)

Arguments

x A vector that should be coerced.

Value

A character string holding the collapsed vector.

translate_df 41

translate_df This function relabels several variables in a data.frame

Description

This function relabels several variables in a data.frame

Usage

translate_df(.data, dictionary, translation, col, col_new, keep_order,
to_factor, is_translated, err_handler)

Arguments

.data Either a data frame, a factor or an atomic vector.

dictionary A lama_dictionary object, holding the translations for various variables.

translation A character vector holding the names of the variable translations which should
be used for assigning new labels to the variable. This names must be a subset of
the translation names returned by names(dictionary).

col Only used if .data is a data frame. The argument col must be a character
vector of the same length as translation holding the names of the data.frame
columns that should be relabeled. If omitted, then it will be assumed that the
column names are the same as the given translation names in the argument
translation.

col_new Only used if .data is a data frame. The argument col must be a character
vector of the same length as translation holding the names under which the
relabeled variables should be stored in the data.frame. If omitted, then it will be
assumed that the new column names are the same as the column names of the
original variables.

keep_order A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all vari-
able translations. If the vector has the same length as the number of arguments
in ..., then the to each variable translation there is a corresponding boolean
configuration. If a translated variable in the data.frame is a factor variable, and
the corresponding boolean configuration is set to TRUE, then the the order of the
original factor variable will be preserved.

to_factor A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all vari-
able translations. If the vector has the same length as the number of arguments
in ..., then the to each variable translation there is a corresponding boolean
configuration. If to_factor is TRUE, then the resulting labeled variable will be
a factor. If to_factor is set to FALSE, then the resulting labeled variable will be
a plain character vector.

42 translate_vector

is_translated A boolean vector of length one or the same length as the number of translations.
If the vector has length one, then the same configuration is applied to all variable
translations. If is_translated = TRUE, then the original variable is a character
vector holding the right labels (character strings). In this case, the labels are
left unchanged, but the variables are turned into factors with order given in the
selected translations.

err_handler An error handling function

Value

An factor vector holding the assigned labels.

translate_vector This function relabels a vector

Description

This function relabels a vector

Usage

translate_vector(val, translation, keep_order, to_factor, is_translated,
err_handler)

Arguments

val The vector that should be relabeled. Allowed are all vector types (also factor).

translation Named character vector holding the label assignments.

keep_order A logical flag. If the vector in val is a factor variable and keep_order is set to
TRUE, then the order of the original factor variable is preserved.

to_factor A logical flag. If set to TRUE, the the resulting labeled variable will be a factor
and a plain character vector otherwise.

is_translated A logical flag. If is_translated = TRUE, then val must be a character vector
holding the right labels (character strings) and will be turned into a factor with
ordering given in the translation (except for the case when keep_order = TRUE).

err_handler An error handling function

Value

A factor vector holding the assigned labels

validate_lama_dictionary 43

validate_lama_dictionary

Check if an object has a valid lama_dictionary structure

Description

This function checks if the object structure is right. It does not check class type.

Usage

validate_lama_dictionary(obj,
err_handler = composerr("The object has not a valid lama_dictionary structure"))

Arguments

obj An object that should be tested

err_handler An error handling function

Translations

A translation is a named character vector of non zero length. This named character vector defines
which labels (of type character) should be assigned to which values (can be of type character, log-
ical or numeric) (e.g. the translation c("0" = "urban", "1" = "rural") assigns the label "urban"
to the value 0 and "rural" to the value 1, for example the variable x = c(0, 0, 1) is translated
to x_new = c("urban", "urban", "rural")). Therefore, a translation (named character vector)
contains the following information:

• The names of the character vector entries correspond to the original variable levels. Variables
of types numeric or logical are turned automatically into a character vector (e.g. 0 and 1 are
treated like "0" and "1").

• The entries (character strings) of the character vector correspond to the new labels, which will
be assigned to the original variable levels. It is also allowed to have missing labels (NAs). In
this case, the original values are mapped onto missing values.

The function lama_translate() is used in order to apply a translation on a variable. The resulting
vector with the assigned labels can be of the following types:

• character: An unordered vector holding the new character labels.

• factor with character levels: An ordered vector holding the new character labels.

The original variable can be of the following types:

• character vector: This is the simplest case. The character values will replaced by the corre-
sponding labels.

• numeric or logical vector: Vectors of type numeric or logical will be turned into character
vectors automatically before the translation process and then simply processed like in the
character case. Therefore, it is sufficient to define the translation mapping for the character
case, since it also covers the numeric and logical case.

44 validate_translation

• factor vector with levels of any type: When translating factor variables one can decide whether
or not to keep the original ordering. Like in the other cases the levels of the factor variable
will always be turned into character strings before the translation process.

Missing values

It is also possible to handle missing values with lama_translate(). Therefore, the used translation
must contain a information that tells how to handle a missing value. In order to define such a
translation the missing value (NA) can be escaped with the character string "NA_". This can be
useful in two situations:

• All missing values should be labeled (e.g. the translation c("0" = "urban", "1" = "rural",
NA_ = "missing") assigns the character string "missing" to all missing values of a variable).

• Map some original values to NA (e.g. the translation c("0" = "urban", "1" = "rural", "2" =
"NA_", "3" = "NA_") assigns NA (the missing character) to the original values 2 and 3). Actu-
ally, in this case the translation definition does not always have to use this escape mechanism,
but only when defining the translations inside of a YAML file, since the YAML parser does not
recognize missing values.

lama_dictionary class objects

Each lama_dictionary class object can contain multiple translations, each with a unique name un-
der which the translation can be found. The function lama_translate() uses a lama_dictionary
class object to translate a normal vector or to translate one or more columns in a data.frame.
Sometimes it may be necessary to have different translations for the same variable, in this case it is
best to have multiple translations with different names (e.g. area_short = c("0" = "urb", "1" =
"rur") and area = c("0" = "urban", "1" = "rural")).

See Also

is.lama_dictionary(), as.lama_dictionary(), new_lama_dictionary(), lama_translate(),
lama_to_factor(), lama_translate_all(), lama_to_factor_all(), lama_read(), lama_write(),
lama_select(), lama_rename(), lama_mutate(), lama_merge()

validate_translation Check if an object has a valid translation structure

Description

This function checks if the object structure is that of a translation (named character vector).

Usage

validate_translation(obj,
err_handler = composerr("The object has not a valid translation structure"))

yaml_to_dictionary 45

Arguments

obj An object that should be tested

err_handler An error handling function

yaml_to_dictionary Transform data structure from yaml format to the lama_dictionary
class input format

Description

When a yaml file is read in, the data has the structure vars (named list) > translations (named
list) This structure is transformed to the lama_dictionary class input structure vars (named list) >
translations (named character vector)

Usage

yaml_to_dictionary(data)

Arguments

data An object similar to a lama-dictionary object, but each translation is not a named
character vector, but a named list holding character strings.

Value

A list that has lama-dictionary structure.

Index

∗ datasets
NA_lama_, 35

array, 35
as.lama_dictionary, 3
as.lama_dictionary(), 16, 19, 21, 23, 24,

27, 32, 39, 40, 44
as.list, 34

base::lapply(), 34, 35
base::sapply(), 34, 35

check_and_translate_all, 6
check_and_translate_df, 7
check_and_translate_df_, 8
check_and_translate_vector, 9
check_and_translate_vector_, 10
check_arguments, 11
check_rename, 12
check_select, 12
composerr (composerr_), 13
composerr(), 13
composerr_, 13
composerr_(), 13
composerr_parent (composerr_), 13
composerr_parent(), 13, 14
contains_na_escape, 14

dictionary_to_yaml, 14

escape_to_na, 15
expression, 34

is.lama_dictionary, 15
is.lama_dictionary(), 39, 44
is.syntactic, 16

lama_dictionary, 3, 6–12, 14, 15, 17, 19–24,
26, 32, 34, 39–41, 43, 45

lama_get, 17
lama_get(), 17

lama_get_ (lama_get), 17
lama_get_(), 17
lama_merge, 19
lama_merge(), 16, 21, 23, 24, 27, 32, 39, 40,

44
lama_mutate, 20
lama_mutate(), 16, 19, 20, 23, 24, 27, 32, 39,

40, 44
lama_mutate_ (lama_mutate), 20
lama_mutate_(), 20
lama_read, 22
lama_read(), 16, 19, 21, 23, 24, 27, 32, 39,

40, 44
lama_rename, 22
lama_rename(), 12, 16, 19, 21, 22, 24, 27, 32,

39, 40, 44
lama_rename_ (lama_rename), 22
lama_rename_(), 12, 22
lama_select, 24
lama_select(), 12, 16, 19, 21, 23, 24, 27, 32,

39, 40, 44
lama_select_ (lama_select), 24
lama_select_(), 12, 24
lama_to_factor (lama_translate), 25
lama_to_factor(), 16, 19, 21, 23–27, 31, 32,

39, 40, 44
lama_to_factor_ (lama_translate), 25
lama_to_factor_(), 25, 27
lama_to_factor_all

(lama_translate_all), 31
lama_to_factor_all(), 16, 19, 21, 23, 24,

27, 31, 32, 39, 40, 44
lama_translate, 25
lama_translate(), 5, 11, 16, 18, 19, 21,

23–27, 31, 32, 38–40, 43, 44
lama_translate_ (lama_translate), 25
lama_translate_(), 11, 25, 27
lama_translate_all, 31
lama_translate_all(), 16, 19, 21, 23, 24,

46

INDEX 47

27, 31, 32, 39, 40, 44
lama_write, 33
lama_write(), 16, 19, 21, 23, 24, 27, 32, 39,

40, 44
lapplI, 34

NA_lama_, 35
na_to_escape, 36
named_lapply, 35
names, 35
new_lama_dictionary, 36
new_lama_dictionary(), 16, 19, 21, 23, 24,

27, 32, 40, 44

print.lama_dictionary, 39

rename_translation, 40

sapplI (lapplI), 34
stringify, 40

translate_df, 41
translate_vector, 42

validate_lama_dictionary, 43
validate_lama_dictionary(), 16
validate_translation, 44

yaml_to_dictionary, 45

	as.lama_dictionary
	check_and_translate_all
	check_and_translate_df
	check_and_translate_df_
	check_and_translate_vector
	check_and_translate_vector_
	check_arguments
	check_rename
	check_select
	composerr_
	contains_na_escape
	dictionary_to_yaml
	escape_to_na
	is.lama_dictionary
	is.syntactic
	lama_get
	lama_merge
	lama_mutate
	lama_read
	lama_rename
	lama_select
	lama_translate
	lama_translate_all
	lama_write
	lapplI
	named_lapply
	NA_lama_
	na_to_escape
	new_lama_dictionary
	print.lama_dictionary
	rename_translation
	stringify
	translate_df
	translate_vector
	validate_lama_dictionary
	validate_translation
	yaml_to_dictionary
	Index

